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LETTER TO THE EDITOR

Basins of attraction of metastable states of the spherical
p-spin model

A Barrat and S Franz
International Center for Theoretical Physics, Strada Costiera 11, PO Box 563, 34100 Trieste,
Italy

Received 10 September 1997

Abstract. We study the basins of attraction of metastable states in the sphericalp-spin spin-
glass model, starting the relaxation dynamics at a given distance from a thermalized condition.
Weighting the initial condition with the Boltzmann distribution we find a finite size for the basins.
In contrast, a white weighting of the initial condition implies vanishing basins of attraction. We
correspond our results to those of a recently constructed effective potential.

The so-called sphericalp-spin spin-glass model has been the subject of many studies:
indeed, being mean-field, it allows for a detailed analytic study, while still displaying very
rich static and dynamical behaviours. In particular in recent papers [1, 2, 3], it has been
shown that the structure of its metastable states, which dominate the Gibbs measure between
two temperatures notedTs and Td (where the static and dynamic transitions respectively
occur [4]), is very rich and complex. The existence of these states is revealed using the
approach of Thoulesset al [5] and they are therefore often called ‘TAP states’ [6, 7]. These
recent works make use of the real replicas method: copies of the system are considered,
at various distances from each other, and the free energy cost (called ‘effective potential’
function) to keep them at given distances is computed. The minima of the potential can then
be associated with the fact that the replicas lie in metastable states, thus giving information
on the distances between states.

This method is therefore purely static; indeed, the dynamics after a quench do not
see all the metastable states, instead giving rise to the phenomenon known as ageing [8]:
quenched belowTd , the system remains out of equilibrium for all times with an energy
higher than the thermodynamic one. On the other hand, it was shown in [1, 9, 10] that
particular initial conditions for the dynamics (namely, taking the system thermalized at a
certain temperature betweenTs andTd , and then letting it evolve to another temperature)
could allow a dynamical exploration of the metastable states finding results consistent with
the picture coming from the two-replica potential.

In this letter we address the problem of determining the size of the basins of attraction
of the TAP states. This will be done by studying the Langevin relaxation of a system
starting at an initial time at a given fixed overlap (q12 in the following) from an equilibrium
configuration. This, of course, does not specify completely the initial conditions. In
the following we will consider two families of them (for fixedq12), weighting the initial
conditions with the Boltzmann distribution and with the uniform one.
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As we will see, the case of Boltzmann weighting can be related to the results found
for a three-replica potential [2] recently introduced. Therefore, for future use, we briefly
recall the results of the two-and three-replicas potentials,V2 andV3, for thep-spin model†:
indeed, the results of the study ofV2 will be used to determine the initial conditions of the
dynamics, and those of the study ofV3 will be compared with the outcome of the dynamics.

The two-replicas potentialV2 is defined [1] as the free energy cost to keep a configuration
τ at a fixed overlapq12 with an equilibrium configurationσ . While in general the two
replicas can be at different temperatures, we will here limit ourselves to the case of equal
temperatureT for replicas 1 (σ ) and 2 (τ ). The overlap between the replicas is denoted
q12, while the use of the replica trick leads to a description of the second replica by a
one-step replica-symmetry breaking (RSB) matrixQ22 of parameters(r1, r0, x), determined
variationally. The absolute minimum of the potential is always forq12 = 0: then the second
replica is at equilibrium, with no constraint, so the free-energy cost is zero. ForT < Td , σ
lies in one of the metastable states that dominate the statics (of Edwards–Anderson parameter
qEA) and a relative minimum appears for a non-zero value ofq12: it corresponds to having
the second replica in the same TAP state as the first.

In order to study the organization of the metastable states in the phase space, the
construction was generalized to three replicas in [2]. There, a first replicaρ is free to
thermalize atT ; a second replicaσ is constrained to thermalize atT with a fixed overlap
q12 with ρ, and the potentialV3 is defined as the free-energy cost to keep a third replicaτ (at
the same temperatureT ) at overlapsq13 from ρ andq23 from σ . We will takeTs < T < Td :
then the first replica is in a certain TAP state of equilibrium atT .

Since the two first replicas are independent of the third, the overlap matrices that describe
them are identical to those used forV2. The third replica is described by a one-step RSB
matrix. In the minima of the potential, this matrix is in fact replica symmetric, with only
one parameterq33.

The analysis of [2] showed that, depending on the value ofq12, the potential can have
one or two nontrivial minima (apart from the minimum atq13 = q23 = 0 corresponding to
the third replica in an unspecified equilibrium state atT , different from those of replicas 1
and 2). The first minimum, calledM1, exists for any value ofq12, and hasq13 = qEA and
q23 ≈ q12. Its interpretation is that the third replica lies in the same state as the first one. It
therefore exists independently of the value ofq12. The second, more interesting minimum,
calledM2 in [2], corresponds to the third replica close to the second one (q23 ≈ qEA,
q13 ≈ q12 < qEA). Its interpretation is that the second replica lies in the basin of attracion
of a metastable state at nonzero overlapq12 from the first replica, while the third replica is
at equilibrium in this state. This solution exists only for values ofq12 lower than a certain
q̄ (which depends on the temperature), withq̄ < qEA (see figure 1). This̄q gives therefore
the minimum distance (or maximum overlap), from an equilibrium state atT , at which can
be found another metastable state.

In order to study the basins of attraction of the metastable states, we study the relaxation
of a system with the following initial condition. We consider a reference configuration at
equilibrium at temperatureT . Then the system evolves from a configuration thermalized at
temperatureT , but with the constraint that its overlap with the reference configuration is
equal toq12. At positive time the spins evolve according to an (unconstrained) Langevin
dynamics at temperatureT :

dσi(t)

dt
= −∂H

∂σi
− µ(t)σi(t)+ ηi(t) (1)

† We will not recall the details of the computations, which can be found in [2].
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Figure 1. Domains of existence of the minimaM1 andM2 of the potentialV3.

where theηi are Gaussian thermal noises with〈ηi(t)ηj (t ′)〉 = 2T δij δ(t − t ′), andµ(t) is a
multiplier that implements the spherical constraint

∑
i σ

2
i = N at all times.

The aim will be to see how the system evolves dynamically, depending on the value of
the initial overlap with an equilibrium configuration.

In order to implement the initial conditions, we have to use the replica trick to describe
the systems: the first will be described byρa with a = 1, . . . , n; the initial conditions are
σα, α = 1, . . . , m and onlyσ 1 is evolving with time, so we useσ(t) instead ofσ 1(t), with
σ(0) = σ 1(0). The limitsm → 0, n → 0 are taken, with a one-step replica symmetric
breaking Ansatz. In the infiniteN limit, we can obtain, in the same way as in [11, 12, 1, 9], a
set of coupled self-consistent dynamical equations for the following quantities (the equations
are written in the appendix):

C(t, t ′) = 1

N

N∑
i=1

〈σi(t)σi(t ′)〉 R(t, t ′) = 1

N

∑
i

〈 ∂σi(t)
∂ηi(t ′)

〉

Cα(t) = 1

N

N∑
i=1

〈σαi σi(t)〉(α > 1; caseα = 1 : C1(t) = C(t, 0))

Qa(t) = 1

N

N∑
i=1

〈σi(t)ρai 〉.

(2)

While C(t, t ′) andR(t, t ′) are the usual correlation and response functions of the system,
the evolution of theCα andQa will give informations on how the system departs from its
initial conditions and how close it goes to the equilibrium state of the first real replicaρ.

The initial conditions can be obtained from the study of the two-replicas potential: we
first imposeQa(0) = Q12

a,1 = δa,1q12. Since the structure of the equations respect the replica
symmetric character or the breaking of replica symmetry of theCα andQa, at all times
Qa(t) = δa,1Q(t), with Q(t) = 1

N

∑N
i=1 ρiσi(t). Then, from the value ofq12, we use the

two-replicas potential to deduct the values forCα(0). According to the value ofq12, it can
be replica symmetric or have one step of replica symmetry breaking. Since the replica-
symmetric case can be recovered in a simple way from the equations of the RSB case,
we will consider only the one-step case. Then the initial conditions forCα has parameters
(r1, r0, x); therefore at all times theCα(t) will have the form

Cα(t) = (C(t, 0), C1(t), C0(t)) (3)
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with the same breaking parameterx†, andC1(0) = r1, C0(0) = r0‡. We define the following
limiting values:

lim
t→∞Q(t) = q0 lim

t→∞C(t, 0) = p̃
lim
t→∞C1(t) = c1 lim

t→∞C0(t) = c0 lim
t→∞µ(t) = µ.

(4)

A simple check is to look at what happens in two extreme cases: (i)q12 = 1:
the system starts at equilibrium atT ; then r1 = r0 = 1, and obviously we obtain
C(t, 0) = Q(t) = C1(t) = C0(t), q0 = p̃ = c1 = c0 = qEA: the system thermalizes in the
particular equilibrium state atT chosen byρ; (ii) q12 = 0: the system is not constrained,
so clearly we obtainQ(t) = C1(t) = C0(t) = 0, C(t, t ′) = C(t − t ′) = C(τ): the system
thermalizes in an unspecified TAP state of equilibrium atT [1, 9].

For other values ofq12, the numerical integration of the dynamical equations shows
that the system, after a transient, reaches a certain equilibrium behaviour; to study the
system at long times, we therefore make the ansatz:C(t, t ′) = C(t − t ′) = C(τ),
R(t, t ′) = R(t − t ′) = R(τ) = − 1

T
dC
dτ , with limτ→∞ C(τ) = q. This ansatz allows, with

usual methods, to obtain coupled equations for the limiting values of the various one-time
quantities, and moreover we have for the evolution of the asymptotic correlation function:

dC

dτ
= − T

1− q (C(τ)− q)− β
∫ τ

0
du(f ′(C(τ − u))− f ′(q))C ′(u). (5)

The equations for the values ofq, q0, p̃, c1, c0 are equivalent to the equations for
the parametersq33, q13, q23, w23, z23 of the three-replicas potential§. This correspondence
pushes forward the one noted in [1, 9] between the potential with two replicas and the
dynamics with thermalized initial conditions. Here, the interpretation is that the first replica
ρ lies in an equilibrium state at temperatureT , the replica number 2 of the potential gives the
initial conditions of the dynamics, while the dynamical system goes towards a minimum of
the potential (given in the potential approach by the third replica) where it relaxes according
to (5), which is exactly the equation of the relaxation in a TAP state of self-overlapq, as
given in [9].

An important difference between the two approaches is that, while the potential can
be explored for all values ofq12, q13, q23 (i.e. all positions of both replicas 2 and 3), the
only parameter of the studied dynamics isq12: the initial conditions of the dynamics can
be compared with the second replica of the potential, and all possible values ofq12 can be
studied, but the values ofq0, p̃ are outcomesof the dynamics and are not chosen. From
the equivalence between potential and dynamics, it follows for the dynamics that, while
for q12 > q̄ only the solutionM1 exists, forq12 < q̄ there are the two solutionsM1 and
M2. However, as the dynamical equations admit (within the one-step RSB ansatz we use)
a unique solution for any finite time, only one of the two can be reached dynamically. The
size of the basin of attraction of the equilibrium states is related to the smallest value ofq12

for which the solutionM1 is reached.
In order to settle this question we integrate numerically the dynamical equations (A1).

For simplicity we limit our analysis to the casep = 3 for which most of the analysis of
[2] was perfomed. ThenTs ≈ 0.586,Td ≈ 0.612 37 and we will show results forT = 0.6:
thenqEA = 0.6, q̄ ≈ 0.342. The numerical integration is carried out using a simple iteration
algorithm, discretizing the dynamical equations with a finite time steph. We proceed with

† This means thatCα(t) is equal toC(t, 0) for α = 1, toC1(t) for α = 2, . . . , x, and toC0(t) for α = x+1, . . . , n.
‡ To recover the replica symmetric case, we taker1 = r0: then, at all times,C1(t) = C0(t).
§ In the replica symmetric case, the equivalence isq33 = q, q0 = q13, c1 = c0 = p̃ = q23.
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Figure 2. Evolution ofC(t, 0), Q(t) andC1(t) = C0(t) with time forq12 = 0.155 702 (left) and
q12 = 0.55 (right). These curves correspond to the extrapolation ath→ 0 of the results of the
numerical integration withh = 0.05, 0.1, 0.2; we see that they go quite quickly to their limiting
valuesp̃, q0 andc1 = c0 (given by the horizontal lines) with̃p = c1 = c0 for q12 = 0.55.

three valuesh, 2h, 4h and then do the interpolation ath → 0 to compare the numerical
values with the values obtained from the study of the potentialV3†.

For ‘small’ values of q12, the dynamics converge rapidly towards an equilibrium
behaviour with time tranlsation invariance and fluctuation-dissipation relation. The
numerical integration yields limits in excellent accordance with the resolution of the
aforementioned equations forq, q0, p̃, c1, c0, and coincide with the values of the
various parameters in the minimumM2 of the three-replicas potential. (e.g. see figure 2,
q12 = 0.155 702, thenr1 = r0 = 0.027 15, q0 = 0.116 338, c1 = c0 = 0.020 5437,
q = 0.608 423,p̃ = 0.609 467. These values coincide with the values respectively ofq13,
w23 = z23, q33, q23 in the minimumM2.) This means that the systemσ(t) stays in the state
found by the replicaσ(0), with finite overlap withρ. We are therefore in the minimum
M2, and out of the attraction basin of the equilibrium state whereρ lies.

Forq12 ‘large’, conversely, we expect that the system, which starts close toρ, remains in
the same state. This is indeed what we find (e.g. forq12 = 0.817 272, thenr1 = r0 = 0.7859;
we obtainq0 = q = qEA, c1 = c0 = p̃ = 0.633 625; the integration of two-times equations
coincide well with the integrations of the equation onC(τ) and with these values). For
a somewhat smaller value ofq12 (e.g. see figure 2,q12 = 0.55, r1 = r0 = 0.556 345) the
same behaviour is obtained: the two-times equations yield the same results as the equations
using the equilibrium ansatz, withq0 = q = qEA, c1 = c0 = p̃ = 0.571 534).

For these values ofq12, the system thermalizes therefore in the TAP state found byρ.
The long-time dynamics is the relaxation dynamics in a TAP state of equlibrium atT , and
therefore does not depend on the initial conditions.

The outcome of the dynamics for small and large values ofq12 show that both minima
M1 andM2 can be dynamically reached. We can then naturally ask if a minimum is always
reached, and what the limiting value is ofq12 for which the system goes towardsρ. We
therefore study the behaviour of the system for values ofq12 decreasing towards̄q, and also
for values lower than, but close tōq. We observe that, while for large values ofq12 (or also
for values ofq12 lower thanq̄) the one-time quantities go directly to their limiting values,
upon decreasingq12 a plateau appears at an intermediate value between the initial and the

† After checking that the interpolation ath → 0 coincides well with the values obtained via the potential, we
used a unique value of the time step for some runs that involved larger timescales, at values ofq12 close to the
limit of the attraction basin.
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Figure 3. Left: evolution with time of the one-time quantitiesC(t, 0), C1(t), C0(t),
Q(t), for q12 = 0.353. We observe the presence of a plateau untilt∗ ≈ 500 before
the quantities reach their final values corresponding toM1. Right: evolution with time of
Q(t) for various values ofq12. From bottom to top,q12 = 0.32, 0.33, 0.34 (< q̄), and
q12 = 0.344, 0.345, 0.346, 0.347, 0.348, 0.35, 0.36, 0.37, 0.38, 0.39, 0.55 (> q̄): we see the
growth of the timescale given by the length of the plateau asq12 decreases towards̄q. For
q12 > q̄, we see that all the curves go to the same limit corresponding toM1, while the limiting
value depends onq12 for q12 < q̄. In both figures, the time step used ish = 0.2.
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Figure 4. Timescalet∗ as a function ofq12 (q̄ ≈ 0.342).

limiting values. This plateau gives a timescalet∗ that grows and diverges whenq12→ q̄.
We show the various one-time quantities for a particular value ofq12, and the evolution of
the plateau and of the timescale withq12, in figures 3 and 4. Forq12 lower thanq̄, we
observe that the dynamics converges towards the values of the parameters in the minimum
M2 of the potential, and no more reachM1.

The situation is therefore that, for anyq12 > q̄, the system reaches the state where the
first replica,ρ, lies, but after a transient which length diverges asq12 goes toq̄. For initial
conditions farther fromρ than q̄, i.e. as soon as the minimumM2 of the potential exists,
the system relaxes in the state corresponding toM2, which is a metastable state at finite
overlap withρ, and is no more able to ‘reach’ρ. We can therefore understandq̄ as the
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limit of the attraction basin of the state whereρ lies. It is worth noting that̄q is quite small
(q̄ ≈ 0.342 for T = 0.6) which means that it is possible to find configurations that will
dynamically evolve towards a TAP state, and thermalize in it within a finite time, even at
quite large distances from typical configurations of this state.

This is the situation that we find if we weight the initial condition with the Boltzmann
probability. Let us turn now briefly to the case of initial conditions with overlapq12 with
ρ, but otherwise uniformly distributed. In this case the basins of attraction are vanishing.
Indeed for any value ofq12 we find that the asymptotic value of the energy is larger than
the equilibrium valueEeq (the energy ofρ). As far as the correlations with the initial state
are concerned we have found two different regimes, separated by a (rather large) threshold
value q∗ of q12 (e.g. q∗ ≈ 0.99 for p = 3, T = 0.6). For q > q∗ the system reaches a
time translation invariant situation, with final energy that depends continuously onq12 (see
figure 5). The overlap with the initial condition tends to a nonzero value in this case, and
the relation between the asymptotic energy and the Edwards–Anderson parameter is the one
verified in the TAP states, indicating equilibration within a metastable state. Forq < q∗

instead, the system loses the correlation with the initial state (and withρ) and irrespectively
of q12, falls into an ageing state with asymptotic energy equal toEdyn(T ) analogous to the
one discussed in [8], where the dynamics starts from a completely random initial condition.
The situation can be understood analysing the energy of the initial state. For each value
of q12 this energy takes with probability one a fixed valueE(q12), which is a decreasing
function of q12 and equalsEeq(T ) for q12 = 1. It is tempting at this point to interpret the
initial states astypical states with that energy, i.e. as equilibrium states at a corresponding
temperatureT (q12). If this is true then forT (q12) < Td the typical initial configuration is
in the basins of metastable states that survive at temperatureT [1, 9, 10], although they
are slightly deformed. The dynamics at temperatureT leads then to equilibrium in these
states. ForT (q12) > Td , the typical initial configuration belongs to the paramagnetic state,
and ageing has to be expected; this means thatT (q∗) = Td . We have checked that this is

-0.834
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-0.828

-0.826

-0.824

0 5 10 15 20 25 30 35 40

Figure 5. Evolution of the energy of the system starting at overlapq12 =
1, 0.999, 0.998, 0.995, 0.99 (symbols, from bottom to top) from an equilibrium configuration
ρ at T = 0.6 (p = 3), but otherwise randomly; the curves give the equilibrium energy
Eeq≈ −0.833 33 andEdyn ≈ −0.824 67.
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indeed the right scenario, using the techniques of [1, 9, 10], finding the interesting result
that, arbitrarily close to an equlibrium state at temperatureT , there are states which are of
equilibrium at some other temperature.

In this letter, we have studied, by a dynamical approach, the attraction basin of an
equilibrium state at temperatureTs < T < Td (and established the correpondence with
the static three-replicas potential). If we weight with the Boltzmann distribution we find
wide basins of attraction. Almost all initial conditions with overlap larger than a threshold
value q̄, are in the basin of attraction of the reference state. Conversely if we perform a
white average we find zero size basins of attraction. Starting close enough to the reference
configuration, the system equilibrates in a TAP state close to the starting point, while if the
initial overlap is larger than this threshold the system ends up ageing. This combination of
facts indicates a highly non trivial structure of the various states and basins of attraction in
configuration space.

We thank A Cavagna, I Giardina and M Virasoro for useful discussions and comments;
also, we are most grateful to A Cavagna and I Giardina for providing us with the values
of the various parameters in the minima of the three-replicas potential, thus allowing the
quantitative comparison between effective potential and dynamics performed in this letter.

Appendix A. Dynamical equations

Denotingf (q) = 1/2qp, and using the methods of [1, 9, 11, 12] one can show that the
following dynamical equations are obeyed:

µ(t) =
∫ t

0
ds (f ′(C(t, s))+ f ′′(C(t, s))C(t, s))R(t, s)+ βf ′(Q(t))Q(t)

+β
m∑
α=1

f ′(Cα(t))Cα(t)

∂R(t, t ′)
∂t

= −µ(t)R(t, t ′)+
∫ t

t ′
ds f ′′(C(t, s))R(t, s)R(s, t ′)

∂C(t, t ′)
∂t

= −µ(t)C(t, t ′)+
∫ t ′

0
ds f ′(C(t, s))R(t ′, s)+

∫ t

0
ds f ′′(C(t, s))R(t, s)C(t ′, s)

+βf ′(Q(t))Q(t ′)+ β
m∑
α=1

f ′(Cα(t))Cα(t ′)

dCα
dt
= −µ(t)Cα(t)+

∫ t

0
ds f ′′(C(t, s))R(t, s)Cα(s)+ βf ′(Q(t))q12

+β
m∑
β=1

f ′(Cβ(t))Q22
αβ

dQa

dt
= −µ(t)Qa(t)+

∫ t

0
ds f ′′(C(t, s))R(t, s)Qa(s)+ βf ′(Qa(t))

+β
m∑
α=1

f ′(Cα(t))Q12
a,α

(A1)

whereQ12 andQ22 are the matrices used in the two-replicas potential [1]. Using the one-
step RSB ansatz, i.e.Cα(t) = (C(t, 0), C1(t), C0(t)) with breaking pointx, with initial
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conditionsC1(0) = r1; C0(0) = r0, Q(0) = q12, we can obtain the equations forC(t, t ′),
R(t, t ′), C1(t), C0(t), Q(t) by expanding the sums in the previous equations; for example:
m∑
α=1

f ′(Cα(t))Cα(t ′) = f ′(C(t, 0))C(t ′, 0)+ (x − 1)f ′(C1(t))C1(t
′)− xf ′(C0(t))C0(t

′).

(A2)
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