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Italy

Received 10 September 1997

Abstract. We study the basins of attraction of metastable states in the sphgfggih spin-

glass model, starting the relaxation dynamics at a given distance from a thermalized condition.
Weighting the initial condition with the Boltzmann distribution we find a finite size for the basins.
In contrast, a white weighting of the initial condition implies vanishing basins of attraction. We
correspond our results to those of a recently constructed effective potential.

The so-called sphericgb-spin spin-glass model has been the subject of many studies:
indeed, being mean-field, it allows for a detailed analytic study, while still displaying very
rich static and dynamical behaviours. In particular in recent papers [1, 2, 3], it has been
shown that the structure of its metastable states, which dominate the Gibbs measure between
two temperatures noted, and 7, (where the static and dynamic transitions respectively
occur [4]), is very rich and complex. The existence of these states is revealed using the
approach of Thoulesst al [5] and they are therefore often called ‘TAP states’ [6, 7]. These
recent works make use of the real replicas method: copies of the system are considered,
at various distances from each other, and the free energy cost (called ‘effective potential
function) to keep them at given distances is computed. The minima of the potential can then
be associated with the fact that the replicas lie in metastable states, thus giving information
on the distances between states.

This method is therefore purely static; indeed, the dynamics after a quench do not
see all the metastable states, instead giving rise to the phenomenon known as ageing [8]:
guenched belowl;, the system remains out of equilibrium for all times with an energy
higher than the thermodynamic one. On the other hand, it was shown in [1, 9, 10] that
particular initial conditions for the dynamics (namely, taking the system thermalized at a
certain temperature betwedh and 7, and then letting it evolve to another temperature)
could allow a dynamical exploration of the metastable states finding results consistent with
the picture coming from the two-replica potential.

In this letter we address the problem of determining the size of the basins of attraction
of the TAP states. This will be done by studying the Langevin relaxation of a system
starting at an initial time at a given fixed overlap{ in the following) from an equilibrium
configuration. This, of course, does not specify completely the initial conditions. In
the following we will consider two families of them (for fixegh,), weighting the initial
conditions with the Boltzmann distribution and with the uniform one.

0305-4470/98/060119+09$19.5@C) 1998 IOP Publishing Ltd L119



L120 Letter to the Editor

As we will see, the case of Boltzmann weighting can be related to the results found
for a three-replica potential [2] recently introduced. Therefore, for future use, we briefly
recall the results of the two-and three-replicas potentidglsand V3, for the p-spin modet:
indeed, the results of the study & will be used to determine the initial conditions of the
dynamics, and those of the study&f will be compared with the outcome of the dynamics.

The two-replicas potentidl, is defined [1] as the free energy cost to keep a configuration
T at a fixed overlapy;, with an equilibrium configuratiornr. While in general the two
replicas can be at different temperatures, we will here limit ourselves to the case of equal
temperaturel for replicas 1 §) and 2 ¢). The overlap between the replicas is denoted
q12, While the use of the replica trick leads to a description of the second replica by a
one-step replica-symmetry breaking (RSB) matpi® of parametersgry, ro, x), determined
variationally. The absolute minimum of the potential is alwaysgfer= 0: then the second
replica is at equilibrium, with no constraint, so the free-energy cost is zeroT FofT,, o
lies in one of the metastable states that dominate the statics (of Edwards—Anderson parameter
gea) and a relative minimum appears for a non-zero valug;¢f it corresponds to having
the second replica in the same TAP state as the first.

In order to study the organization of the metastable states in the phase space, the
construction was generalized to three replicas in [2]. There, a first replicafree to
thermalize atT’; a second replica is constrained to thermalize &t with a fixed overlap
g12 With p, and the potentiaVs is defined as the free-energy cost to keep a third repliG
the same temperatuf@ at overlapsyiz from p andg,sz fromo. We will take T, < T < Ty:
then the first replica is in a certain TAP state of equilibriuntat

Since the two first replicas are independent of the third, the overlap matrices that describe
them are identical to those used fgs. The third replica is described by a one-step RSB
matrix. In the minima of the potential, this matrix is in fact replica symmetric, with only
one parametegss.

The analysis of [2] showed that, depending on the valug;gfthe potential can have
one or two nontrivial minima (apart from the minimum@ag = ¢>3 = 0 corresponding to
the third replica in an unspecified equilibrium stateTatdifferent from those of replicas 1
and 2). The first minimum, called,, exists for any value of1,, and hasj;3 = gea and
g23 ~ q12. Its interpretation is that the third replica lies in the same state as the first one. It
therefore exists independently of the valueggf. The second, more interesting minimum,
called M, in [2], corresponds to the third replica close to the second gag & gea,
q13 ~ q12 < gea)- Its interpretation is that the second replica lies in the basin of attracion
of a metastable state at nonzero ovelapfrom the first replica, while the third replica is
at equilibrium in this state. This solution exists only for valueg;gf lower than a certain
g (which depends on the temperature), wjth< gea (see figure 1). Thig gives therefore
the minimum distance (or maximum overlap), from an equilibrium sta@, a&t which can
be found another metastable state.

In order to study the basins of attraction of the metastable states, we study the relaxation
of a system with the following initial condition. We consider a reference configuration at
equilibrium at temperatur&. Then the system evolves from a configuration thermalized at
temperaturel’, but with the constraint that its overlap with the reference configuration is
equal togi,. At positive time the spins evolve according to an (unconstrained) Langevin
dynamics at temperatutg:

do; (1) OH

& =3 w(t)oi(t) + n; (1) @)

T We will not recall the details of the computations, which can be found in [2].
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RSB region

Existence of M

Figure 1. Domains of existence of the minime, and M» of the potentialVs.

where they; are Gaussian thermal noises with (t)n; () = 2T5;;6(t — '), andu(z) is a
multiplier that implements the spherical constra}if o> = N at all times.

The aim will be to see how the system evolves dynamically, depending on the value of
the initial overlap with an equilibrium configuration.

In order to implement the initial conditions, we have to use the replica trick to describe
the systems: the first will be described py with a = 1, ..., n; the initial conditions are
o% a=1,...,m and onlys! is evolving with time, so we use () instead ofo1(), with
o(0) = 0%(0). The limitsm — 0, n — 0 are taken, with a one-step replica symmetric
breaking Ansatz. In the infinit& limit, we can obtain, in the same way asin [11, 12, 1, 9], a
set of coupled self-consistent dynamical equations for the following quantities (the equations
are written in the appendix):

L1 : 1 d0:()
c@,r)= NE {o1(D)o; (1)) R(t,1") = E (am(t)>
1 N
C,(t) = v 4 E (of0; (%0 (1)) (a > 1; casea = 1: C1(t) = C(z,0)) 2)

N

1 -
Qu(t) = = > {oi(0pf).

i=1

While C(¢,¢") and R(z,t") are the usual correlation and response functions of the system,
the evolution of theC, and Q, will give informations on how the system departs from its
initial conditions and how close it goes to the equilibrium state of the first real replica

The initial conditions can be obtained from the study of the two-replicas potential: we
first imposeQ,(0) = Qfl = 8,.1q12. Since the structure of the equations respect the replica
symmetric character or the breaking of replica symmetry of@heand Q,, at all times
Q.() = 38,10(r), with Q(¢) = % Zf"zl pioi(t). Then, from the value of;,, we use the
two-replicas potential to deduct the values &y(0). According to the value of», it can
be replica symmetric or have one step of replica symmetry breaking. Since the replica-
symmetric case can be recovered in a simple way from the equations of the RSB case,
we will consider only the one-step case. Then the initial conditiongfphas parameters
(r1, ro, x); therefore at all times th€, (r) will have the form

Ca (1) = (C(2,0), C1(1), Co(1)) 3
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with the same breaking parametdr, andC1(0) = r1, Co(0) = rot. We define the following
limiting values:

lim Q(t) = qo lim C(¢,0) =p

L o : 4)
lim C1(¢) =1 lim Co(t) = co lim w(t) = pn.

t—00 t—00 t—00

A simple check is to look at what happens in two extreme cases:gfi)= 1:
the system starts at equilibrium &t thenr; = ro = 1, and obviously we obtain
C@,0) = Q@) = C1(t) = Co(t), go = p = c1 = co = gea: the system thermalizes in the
particular equilibrium state & chosen byp; (i) g1 = 0: the system is not constrained,
so clearly we obtainQ () = C1(¢t) = Co(t) = 0, C(¢,t') = C(t — t') = C(7): the system
thermalizes in an unspecified TAP state of equilibriunT gL, 9].

For other values of;1,, the numerical integration of the dynamical equations shows
that the system, after a transient, reaches a certain equilibrium behaviour; to study the
system at long times, we therefore make the ansaiZ:,t') = C(t —t') = C(1),
R(t,t) =Rt —1t)=R(r) = —%‘é—f with lim,_, ., C(t) = ¢. This ansatz allows, with
usual methods, to obtain coupled equations for the limiting values of the various one-time
guantities, and moreover we have for the evolution of the asymptotic correlation function:

dC T ! ! ! !
P _T(C(T) —q) — ﬂ/ du(f(C(r —w) — f(@)C"w). (5)
T q 0

The equations for the values qf g0, p, c1, co are equivalent to the equations for
the parametergss, g13, g23, w23, z23 Of the three-replicas potential This correspondence
pushes forward the one noted in [1, 9] between the potential with two replicas and the
dynamics with thermalized initial conditions. Here, the interpretation is that the first replica
p lies in an equilibrium state at temperatdtethe replica number 2 of the potential gives the
initial conditions of the dynamics, while the dynamical system goes towards a minimum of
the potential (given in the potential approach by the third replica) where it relaxes according
to (5), which is exactly the equation of the relaxation in a TAP state of self-overlas
given in [9].

An important difference between the two approaches is that, while the potential can
be explored for all values afi12, g13, g23 (i.€. all positions of both replicas 2 and 3), the
only parameter of the studied dynamicsgig: the initial conditions of the dynamics can
be compared with the second replica of the potential, and all possible valyes adn be
studied, but the values afy, p are outcomesof the dynamics and are not chosen. From
the equivalence between potential and dynamics, it follows for the dynamics that, while
for g1 > g only the solutionM; exists, forg;, < g there are the two solution&; and
M. However, as the dynamical equations admit (within the one-step RSB ansatz we use)
a unique solution for any finite time, only one of the two can be reached dynamically. The
size of the basin of attraction of the equilibrium states is related to the smallest vajuge of
for which the solutionM; is reached.

In order to settle this question we integrate numerically the dynamical equations (Al).
For simplicity we limit our analysis to the cage= 3 for which most of the analysis of
[2] was perfomed. Theff; ~ 0.586, T; ~ 0.612 37 and we will show results fdf = 0.6:
thengea = 0.6, ¢ ~ 0.342. The numerical integration is carried out using a simple iteration
algorithm, discretizing the dynamical equations with a finite time &tejVe proceed with

T This means thaf, (r) is equal toC (¢, 0) for« = 1,t0C1(¢) fora = 2, ..., x, and toCo(¢) fora = x+1, ..., n.
1 To recover the replica symmetric case, we take= ro: then, at all times(C1(t) = Co(z).
§ In the replica symmetric case, the equivalencesis= ¢, go = ¢13, c1 = co = p = ¢23.
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Figure 2. Evolution of C(z, 0), Q(¢) andC1(¢) = Co(r) with time for g1 = 0.155 702 (left) and
q12 = 0.55 (right). These curves correspond to the extrapolation-at O of the results of the
numerical integration witlk = 0.05, 0.1, 0.2; we see that they go quite quickly to their limiting
valuesp, go andci = co (given by the horizontal lines) withh = ¢1 = ¢g for g12 = 0.55.

three values:, 2h, 4h and then do the interpolation at— 0 to compare the numerical
values with the values obtained from the study of the potemtial

For ‘small’ values ofgiz, the dynamics converge rapidly towards an equilibrium
behaviour with time tranlsation invariance and fluctuation-dissipation relation. The
numerical integration yields limits in excellent accordance with the resolution of the
aforementioned equations faf, qo, p, ci, co, and coincide with the values of the
various parameters in the minimum, of the three-replicas potential. (e.g. see figure 2,
g1z = 0155702, thenr; = ro = 0.027 15,99 = 0.116338,c1 = ¢ = 0.0205437,

g = 0.608423,p = 0.609467. These values coincide with the values respectively Hf

W23 = Z23, ¢33, g23 iN the minimumAM,.) This means that the systes{r) stays in the state
found by the replicasr (0), with finite overlap withp. We are therefore in the minimum
M>, and out of the attraction basin of the equilibrium state whetees.

For ¢12 ‘large’, conversely, we expect that the system, which starts clogeremains in
the same state. This is indeed what we find (e.ggfer= 0.817 272, them; = ro = 0.7859;
we obtaingg = g = gea, c1 = co = p = 0.633625; the integration of two-times equations
coincide well with the integrations of the equation 6tr) and with these values). For
a somewhat smaller value qf, (e.g. see figure 241, = 0.55, r; = rg = 0.556 345) the
same behaviour is obtained: the two-times equations yield the same results as the equations
using the equilibrium ansatz, witdy = ¢ = gea, c1 = co = p = 0.571534).

For these values af;, the system thermalizes therefore in the TAP state foung.by
The long-time dynamics is the relaxation dynamics in a TAP state of equlibriufy ahd
therefore does not depend on the initial conditions.

The outcome of the dynamics for small and large valueg;phow that both minima
M; and M, can be dynamically reached. We can then naturally ask if a minimum is always
reached, and what the limiting value is @f; for which the system goes towargs We
therefore study the behaviour of the system for valueg ptiecreasing towardg, and also
for values lower than, but close o We observe that, while for large valuesq@p$ (or also
for values ofg;, lower thang) the one-time quantities go directly to their limiting values,
upon decreasing;, a plateau appears at an intermediate value between the initial and the

1 After checking that the interpolation at — O coincides well with the values obtained via the potential, we
used a unigue value of the time step for some runs that involved larger timescales, at vajugslo$e to the
limit of the attraction basin.
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Figure 3. Left: evolution with time of the one-time quantitie§(z,0), C1(z), Co(t),

Q(), for g12 = 0.353. We observe the presence of a plateau utiti~ 500 before
the quantities reach their final values correspondingitp Right: evolution with time of
Q(r) for various values ofg;2. From bottom to top,gi2 = 0.32,0.33,0.34 (< ¢), and
q12 = 0.344,0.345 0.346 0.347,0.348 0.35,0.36,0.37,0.38,0.39,0.55 (> g): we see the
growth of the timescale given by the length of the plateaygsdecreases towards. For

q12 > ¢, we see that all the curves go to the same limit corresponding;tonhile the limiting
value depends oy for g12 < g. In both figures, the time step usedhis= 0.2.
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Figure 4. Timescaler* as a function ofj12 (g ~ 0.342).

limiting values. This plateau gives a timescatethat grows and diverges when, — g.

We show the various one-time quantities for a particular valug;gfand the evolution of

the plateau and of the timescale wighy, in figures 3 and 4. Fogi, lower thang, we
observe that the dynamics converges towards the values of the parameters in the minimum
M, of the potential, and no more readf.

The situation is therefore that, for agy, > g, the system reaches the state where the
first replica, p, lies, but after a transient which length divergesygsgoes tog. For initial
conditions farther fronp thang, i.e. as soon as the minimui, of the potential exists,
the system relaxes in the state corresponding/to which is a metastable state at finite
overlap with p, and is no more able to ‘reacly. We can therefore understagdas the
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limit of the attraction basin of the state whesdies. It is worth noting thag is quite small
(g = 0.342 for T = 0.6) which means that it is possible to find configurations that will
dynamically evolve towards a TAP state, and thermalize in it within a finite time, even at
quite large distances from typical configurations of this state.

This is the situation that we find if we weight the initial condition with the Boltzmann
probability. Let us turn now briefly to the case of initial conditions with ovegapwith
o, but otherwise uniformly distributed. In this case the basins of attraction are vanishing.
Indeed for any value of;, we find that the asymptotic value of the energy is larger than
the equilibrium valueEeq (the energy ofo). As far as the correlations with the initial state
are concerned we have found two different regimes, separated by a (rather large) threshold
value g* of ¢g12 (e.9.¢* =~ 0.99 for p = 3, T = 0.6). Forqg > ¢* the system reaches a
time translation invariant situation, with final energy that depends continuousjy,qisee
figure 5). The overlap with the initial condition tends to a nonzero value in this case, and
the relation between the asymptotic energy and the Edwards—Anderson parameter is the one
verified in the TAP states, indicating equilibration within a metastable state.q Forg*
instead, the system loses the correlation with the initial state (andoyitimd irrespectively
of g1, falls into an ageing state with asymptotic energy equaldg(7') analogous to the
one discussed in [8], where the dynamics starts from a completely random initial condition.
The situation can be understood analysing the energy of the initial state. For each value
of g1, this energy takes with probability one a fixed valB€g;,), which is a decreasing
function of g1» and equalsEey(T) for ¢12 = 1. It is tempting at this point to interpret the
initial states agypical states with that energy, i.e. as equilibrium states at a corresponding
temperaturel (¢12). If this is true then forT (g12) < T, the typical initial configuration is
in the basins of metastable states that survive at temperatiie 9, 10], although they
are slightly deformed. The dynamics at temperatliréeads then to equilibrium in these
states. FofT (q12) > T,, the typical initial configuration belongs to the paramagnetic state,
and ageing has to be expected; this meansfiiat) = 7,. We have checked that this is

-0.824 T T T T T T T
o
-0.826 - o J
a
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
-0.828 - 1
X
'0.83_ ><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><-
-0.832 | “2scnsnscasnssasan AAAMAANGANAAMAAAAAAALAALALA AL A
U U
T T - e S T e—
-0.834 L J
5 10 15 20 25 30 35 40
Figure 5. Evolution of the energy of the system starting at overlgp, =

1,0.999 0.998 0.995 0.99 (symbols, from bottom to top) from an equilibrium configuration
patT = 0.6 (p = 3), but otherwise randomly; the curves give the equilibrium energy
Eeq~ —0.833 33 andEqyn ~ —0.82467.
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indeed the right scenario, using the techniques of [1, 9, 10], finding the interesting result
that, arbitrarily close to an equlibrium state at temperafir¢here are states which are of
equilibrium at some other temperature.

In this letter, we have studied, by a dynamical approach, the attraction basin of an
equilibrium state at temperatufE < T < T, (and established the correpondence with
the static three-replicas potential). If we weight with the Boltzmann distribution we find
wide basins of attraction. Almost all initial conditions with overlap larger than a threshold
value g, are in the basin of attraction of the reference state. Conversely if we perform a
white average we find zero size basins of attraction. Starting close enough to the reference
configuration, the system equilibrates in a TAP state close to the starting point, while if the
initial overlap is larger than this threshold the system ends up ageing. This combination of
facts indicates a highly non trivial structure of the various states and basins of attraction in
configuration space.

We thank A Cavagna, | Giardina and M Virasoro for useful discussions and comments;
also, we are most grateful to A Cavagna and | Giardina for providing us with the values
of the various parameters in the minima of the three-replicas potential, thus allowing the
guantitative comparison between effective potential and dynamics performed in this letter.

Appendix A. Dynamical equations

Denoting f(q) = 1/2¢?, and using the methods of [1, 9, 11, 12] one can show that the
following dynamical equations are obeyed:

() =/O ds (f'(C(t,5) + f"(C(t, s)Ct, R, s) + B (Q1) Q1)

+BY . F(Cal)Cal®)
a=1
aR;tt7 t') = —u(®R(, 1) _|_/ ds f/(C(t, s))R(t, s)R(s, 1))
AC(t, 1) / ‘o / C |
ot :_M(I)C(Lt)—}_\/O\ de(C(t, S))R(t,s)—‘r—/O\ dsf (C(t7s))R(t,S)C([’S)
+BL(QW)QW) + B Y f(Calt))Calt') (A1)
a=1
dCO( ' " ,
a _:u(t)ca(t)“l‘/(; ds £/ (C(t, s)R(t, 5)Cu(s) + BF (O(1))q12
+BY_ S (Cp1) QL
=1
dQ. I /
@ —M(t)Qa(t)+f0 ds £7(C(t, $))R(t, 5)0u(s) + B (Qu(t))

m

+B Y f(Ca) 0,
a=1

where 012 and Q?? are the matrices used in the two-replicas potential [1]. Using the one-
step RSB ansatz, i.&,(t) = (C(t,0), C1(t), Co(t)) with breaking pointx, with initial
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conditionsC1(0) = ry; Co(0) = ro, Q(0) = ¢12, We can obtain the equations far(, ¢'),
R(,t"), C1(t), Co(t), Q(t) by expanding the sums in the previous equations; for example:

Z F(Ca@)Co () = fI(Ct,0)C{,0) + (x = 1) f'(C1(1))C1(t') — xf'(Co(1))Co(t).
a=1

(A2)
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